
Download free eBooks at bookboon.com

Prolog Techniques

13

Accumulator Technique

Chapter 1

Accumulator Technique

One of the features of Prolog which beginners may find difficult to cope with is the absence of a language
construct for writing loops such as the while and for loops known from imperative programming. In Prolog,
repetition is accomplished by recursion which holds some pitfalls for the novice user. In this chapter, we
introduce the accumulator technique for defining predicates by recursion.

1.1 A Simple Example

Let us start with the simple problem of calculating the sum of the (integer) entries in a list. A näıve definition
is as follows.

Prolog Code P-1.1: Definition of sum/2

1 sum([],0). % clause 1

2 sum([H|T],S) :- sum(T,S0), S is H + S0. % clause 2

The definition of sum/2 in (P-1.1) is by recursion: clause 1 is the Base Case, clause 2 is the Recursive Step. It
is a viable definition for lists of moderate length, as shown below.

?- from to(1,100,L), sum(L,S). 1

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...]

S = 5050

For longer lists, however, error by stack overflow is observed:

?- from to(1,100000,L), sum(L,S).

ERROR: Out of local stack2

How should sum/2 be restructured to avoid this problem? The answer lies in what is called a tail recursive
definition:

1For a definition of the predicate from to(+Low,+High,-List) , see Exercise 1.1, p. 17 and the solution of Exercise 3.16, p. 167.
from to/3 returns in List the list of integers between the bounds Low and High .

2The query below shows that stack overflow is caused here by sum/2 and not by from to/3 .

?- from to(1,100000,L).

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...]

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

14

Accumulator Technique

For a predicate defined by a recursive clause, the self-invocation should be the last goal in its body.
And, for the Prolog system to discard all references to the goals preceding the last one (and thereby
freeing up memory), a cut (!) should be introduced just before the self-invocation.

There is no immediate way of rewriting the second clause of sum/2 along these lines (The order of the goals in
its body can’t be interchanged since the tail needs summing before the final sum is computed.) The problem
is solved by augmenting the old version by an accumulator argument for holding intermediate results of the
computation. The new version, sum/3 , is defined by

Prolog Code P-1.2: Definition of sum/3

1 sum([],S,S). % clause 1

2 sum([H|T],Acc,S) :- NewAcc is Acc + H, !, sum(T,NewAcc,S). % clause 2

The second argument of sum/3 serves as an accumulator that holds a value which could be termed ‘the sum
accrued thus far’. The third argument is carried (in clause 2) as an uninstantiated variable until eventually (in
clause 1) it is unified with the accumulator. By the time clause 1 applies, the accumulator will have received
the sum of all entries of the initial list provided that the accumulator argument has been initialized to zero;
this latter step is carried out when invoking sum/3 :

?- from to(1,100000,L), sum(L,0,S).

L = [1, 2, 3, 4, 5, 6, 7, 8, 9|...]

S = 5.00005e+009

(There is no error due to stack overflow this time!)
We may define new sum/2 by

Prolog Code P-1.3: Definition of new sum/2

1 new_sum(L,S) :- sum(L,0,S). % clause 0

The predicate sum/3 is used by new sum/2 as an auxiliary predicate. The accumulator argument in sum/3 is
initialised by new sum/2 in clause 1 to zero.

1.2 Hand Computations

It is instructive to examine the workings of new sum/2 and sum/3 by a sequence of hand computations (see,
[3], pp. 116). To consider a specific case, we trace in Fig. 1.1 the computation by new sum/2 of the sum of the
entries of [1,2,3] . The wavy arrow (�) is used to indicate transitions, interrelating one stage with the next.
The details of how a transition is (or should be) accomplished are elaborated upon in the clause as marked
above the arrow.

1.3 Further Examples

Hand computations can be carried out to test code already written but they are also useful for defining new
predicates. It is this latter rôle in which we are going to illustrate their use here in several examples. The
following steps will be involved.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

15

Accumulator Technique

new sum([1,2,3],S)
0©

�� sum([1,2,3],0,S)
2©

�� sum([2,3],1,S)
2©

��

sum([3],3,S)
2©

�� sum([],6,S)
1©

�� S = 6
0©

�� success

Figure 1.1: Hand Computations for new sum/2

• State the algorithm to be employed. This may take various forms, most likely, it will be in plain English.3

• Construct an example (or examples) typifying all conceivable situations.

• Carry out hand computations for the examples chosen. Transitions of a similar kind (i.e. those intended
to be covered by the same clause) receive identical labels.

• Inspect the hand computations and define a clause for each label.

3In Sect. 1.4, pseudocodes will be introduced for describing algorithms.

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Prolog Techniques

16

Accumulator Technique

Example 1.1. Define a new version of the built-in predicate reverse/2 for reversing a list.
Our approach is easily visualized by thinking of the list entries as a pack of cards whose order has to be

reversed. Put the pack, face down, on the table and build up a second pack by moving the cards from the top
of the first, one by one, to the top of the second. The stopping criterion is also obvious: stop when the first pile
is used up, i.e. if the first list is empty. The hand computations in Fig. 1.2 have been carried out using this
idea. The definition (P-1.4) is based on them.

rev([1,2,3],R)
0©

�� rev([1,2,3],[],R)
2©

�� rev([2,3],[1],R)
2©

��

rev([3],[2,1],R)
2©

�� rev([],[3,2,1],R)
1©

�� R = [3,2,1]
0©

�� success

Figure 1.2: Hand Computations for rev/2

Prolog Code P-1.4: Definition of rev/2

1 rev(L,R) :- rev(L,[],R). % clause 0

2 rev([],R,R). % clause 1

3 rev([H|T],Acc,R) :- rev(T,[H|Acc],R). % clause 2

�

Example 1.2. Define a predicate min/2 for computing the smallest entry of an (integer) list as shown
below.

?- min([7,-3,2,5],S).

S = -3

The idea is again readily illustrated by using a pack of cards. We are now looking for the card with the
smallest value.

1. Take the top one and set it aside.

2. Inspect the top card and compare its value with the one set aside. Retain the smaller of the two, set it
aside while discarding the other.

3. Repeat step 2 until you run out of cards. The one set aside will be a one with the minimum value.

From the hand computations in Fig. 1.3 it is seen that there should be two recursive clauses: in the case marked
2©, the head of the list is smaller than the current value of the accumulator and thus it will be replaced by the
former; in the case marked 3©, this condition does not apply and therefore the old accumulator value is retained.
Fig. 1.3 also shows that the initial value of the accumulator in min/3 is the head of the input list (step 0©).4

4There is an alternative to this. Use the built-in predicate current prolog flag/2 to find the largest integer Prolog can
represent and initialize the accumulator to this value:

?- current prolog flag(max integer,Large), min([7,-3,2,5],Large,M).

Large = 2147483647

M = -3

Yes

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

17

Accumulator Technique

min([7,-3,2,5],M)
0©

�� min([-3,2,5],7,M)
2©

�� min([2,5],-3,M)
3©

��

min([5],-3,M)
3©

�� min([],-3,M)
1©

�� M = -3
0©

�� success

Figure 1.3: Hand Computations for min/2

Prolog Code P-1.5: Definition of min/2

1 min([H|T],M) :- min(T,H,M). % clause 0

2 min([],M,M). % clause 1

3 min([H|T],Acc,M) :- H < Acc, !, min(T,H,M). % clause 2

4 min([_|T],Acc,M) :- min(T,Acc,M). % clause 3

(Notice that in clause 3 the goal H >= Acc is omitted as it would always succeed by the time that clause is
tried. Here we rely on the clauses’ particular order.)

�

Exercise 1.1. Define a predicate from to(?Low,?High,?List) for producing in List all the natural
numbers in ascending order between Low and High . The various modes of operation of from to/3 are illustrated
below.

?- from to(6,9,L). 5

L = [6, 7, 8, 9]

?- from to(6,9,[, ,E|]). 6

E = 8

?- from to(Low,High,[6, 7, 8, 9]). 7

Low = 6 High = 9

?- from to(6,9,[6, 7, 8, 9]).

Yes

?- from to(9,6,L).

No

Some suggested hand computations are shown in Fig. 1.4.

�

Example 1.3. (Several accumulators) Define cnt(+Atom,-U,-L) for counting the number of upper and
lower case letters in an atom. The query below illustrates the intended behaviour of cnt/3 .

?- cnt(’’’The Magic Flute’’ is Mozart’’s last opera.’,U,L). 8

U = 4

L = 27

5Use the built-in predicates var/1 and integer/1 when implementing this functionality.
6Here we pick out the third entry of the result list by pattern matching. The built-in predicate is list/1 should be used to al-

low for such behaviour.
7To implement this functionality, you will need the built-in predicate last/2 .
8The outside quotes mark the atom. Inside the atom, the characters ’’ stand for the quote.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

18

Accumulator Technique

from to(6,9,L) �� from to acc(6,[9],L) ��

from to acc(6,[8,9],L) �� from to acc(6,[7,8,9],L) ��

from to acc(6,[6,7,8,9],L) �� L = [6,7,8,9] �� success

Figure 1.4: Suggested Hand Computations for from to/3

Instead of inspecting the atom’s characters directly, we will convert them by the built-in predicate atom codes/2

to the list of their corresponding ASCII values and then class each entry according to whether it is

• Between 65 and 90 (⇒ upper case, increment first accumulator),

• Between 97 and 122 (⇒ lower case, increment second accumulator),

• None of the above (⇒ non-alphabetic, no incrementation).

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Prolog Techniques

19

Accumulator Technique

Built-in Predicate: atom codes(?Atom,?List)

It converts Atom into the corresponding List of ASCII values and vice versa.
Example:

?- atom codes(’Way Out’,L).

L = [87, 97, 121, 32, 79, 117, 116]

Hand computations for cnt/3 on the atom ’Way Out’ are shown in Fig. 1.5. The code shown in (P-1.6)

cnt(’Way Out’,U,L)
0©

��

cnt([87,97,121,32,79,117,116],0,0,U,L)
2©

��

cnt([97,121,32,79,117,116],1,0,U,L)
3©

��

cnt([121,32,79,117,116],1,1,U,L)
3©

��

cnt([32,79,117,116],1,2,U,L)
4©

�� cnt([79,117,116],1,2,U,L)
2©

��

cnt([117,116],2,2,U,L)
3©

�� cnt([116],2,3,U,L)
3©

��

cnt([],2,4,U,L)
1©

�� U = 2, L = 4
0©

�� success

Figure 1.5: Hand Computations for cnt/3

mirrors the hand computations.

Prolog Code P-1.6: Definition of cnt/3

1 cnt(Atom,U,L) :- atom_codes(Atom,Values), % clause 0

2 cnt(Values,0,0,U,L), !. %

3 cnt([],U,L,U,L). % clause 1

4 cnt([H|T],AccU,AccL,U,L) :- upper(H), % clause 2

5 NewAccU is AccU + 1, %

6 !, cnt(T,NewAccU,AccL,U,L). %

7 cnt([H|T],AccU,AccL,U,L) :- lower(H), % clause 3

8 NewAccL is AccL + 1, %

9 !, cnt(T,AccU,NewAccL,U,L). %

10 cnt([_|T],AccU,AccL,U,L) :- cnt(T,AccU,AccL,U,L). % clause 4

The auxiliary predicates used in (P-1.6) are upper/1 and lower/1 ; they are defined in (P-1.7).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

20

Accumulator Technique

Q

Prolog Code P-1.7: Definitions of upper/1 and lower/1

1 upper(C) :- C >= 65, C =< 90.

2 lower(C) :- C >= 97, C =< 122.

�

Example 1.4. (Grouping of arguments) For better readibility, arguments may be grouped by using com-
pound terms. The name of the term’s functor is chosen to reflect the arguments’ common rôle. For example, a
new version of cnt/3 from Example 1.3, called count/2 , is shown in (P-1.8)

Prolog Code P-1.8: Definition of count/2

1 count(Atom,cases(U,L)) :- atom_codes(Atom,Values), % clause 0

2 count(Values,acc(0,0),acc(U,L)), !. %

3 count([],Acc,Acc). % clause 1

4 count([H|T],acc(U,L),Result) :- upper(H), % clause 2

5 NewU is U + 1, !, %

6 count(T,acc(NewU,L),Result). %

7 count([H|T],acc(U,L),Result) :- lower(H), % clause 3

8 NewL is L + 1, !, %

9 count(T,acc(U,NewL),Result). %

10 count([_|T],acc(U,L),Result) :- count(T,acc(U,L),Result). % clause 4

count/2 will behave as cnt/3 does:

?- count(’Way Out’,cases(U,L)).

U = 2

L = 4

count/2 is essentially the same predicate as cnt/3 but the number of arguments is reduced to two via the
term cases/2 . The auxiliary predicate count/3 has been derived from cnt/5 by merging the two accumulator
arguments and the two output arguments each. The accumulators are grouped by the compound term acc/2 ;
the now single output argument is reproduced in the recursive clauses 2–4 by a variable until upon satisfying
the stopping criterion in clause 1, it is unified with the term in the accumulator argument. The call to count/3

in clause 0 initialises the accumulator to acc(0,0) ; the result is received in the variables U and L by unifying
the third argument with the acc(U,L) .

This example shows that argument grouping allows the arity of a predicate to be reduced. This observation
will be useful in our discussion of a generalization of the accumulator technique in Sect. 1.5.

By repeatedly applying this technique, more elaborate hierarchical groupings of arguments may be achieved
by nesting terms.

�

Example 1.5. (Test for success or failure only) A palindrome is a list (of atoms) which is identical to its
reverse. We can use rev/2 from Example 1.1 to test if a list is a palindrome:

?- rev([m,a,d,a,m],[m,a,d,a,m]).

Yes

?- rev([a,d,a,m],[a,d,a,m]).

No

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

21

Accumulator Technique

Clearly, in both cases the entire reverse of the first argument had to be computed for subsequent matching with
the original by way of unification. (P-1.9) shows a more efficient solution ([8], p. 110).

Prolog Code P-1.9: Definition of palin/1

1 palin(L) :- palin(L,[]). % clause 0

2 palin(L,L). % clause 1

3 palin([_|T],T). % clause 2

4 palin([H|T],Acc) :- palin(T,[H|Acc]). % clause 3

If palin/1 succeeds, only the front of the list will be worked through as illustrated in Fig. 1.6. (Clauses
like 1 and 2 will be executed by unification.) For cases which fail, still the whole list will have to be scanned
(Fig. 1.7).

palin([m,a,d,a,m])
0©

�� palin([m,a,d,a,m],[])
3©

��

palin([a,d,a,m],[m])
3©

�� palin([d,a,m],[a,m])
2©

�� success

palin([o,t,t,o])
0©

�� palin([o,t,t,o],[])
3©

�� palin([t,t,o],[o])
3©

��

palin([t,o],[t,o])
1©

�� success

Figure 1.6: Hand Computations for palin/1 — success

palin([a,d,a,m])
0©

�� palin([a,d,a,m],[])
3©

��

palin([d,a,m],[a])
3©

�� palin([a,m],[d,a])
3©

��

palin([m],[a,d,a])
3©

�� palin([],[m,a,d,a]) �� failure

Figure 1.7: Hand Computations for palin/1 — failure

�

Example 1.6. (Switches as accumulators) Define numbers(+Atom,-N) for finding out how many numbers
there are in an Atom . Example:

?- numbers(’Elisabeth the 1st reigned between 1558 and 1603.’,N).

N = 3

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

22

Accumulator Technique

This task can be solved in various ways but we are interested in a solution which makes only a single pass
through the list of the (encoded) characters of Atom .

We can view our problem as having to count the number of sequences of digits in Atom . We shall of course
work with the characters’ encoded values; the ASCII values of the ten digits are 48, . . . , 57. digit/1 in (P-1.10)
succeeds for encoded digits.

Prolog Code P-1.10: Definition of the auxiliary predicate digit/1

1 digit(C) :- 48 =< C, C =< 57.

As we progress through the list of (encoded) characters, the beginning of a new sequence of digits will be
recognized by the condition

• The previous character was not a digit

• The current character is a digit.

We employ a dedicated, two-valued argument, called a switch, to save the information about the digit read.
The switch has two alternative states: digit and nodigit ; it will be initialized to nodigit . We also use an
accumulator argument for the number of digit sequences ‘encountered thus far’. The accumulator is incremented
every time the switch changes state from nodigit to digit .

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Prolog Techniques

23

Accumulator Technique

The predicate numbers(+List,+Switch,+Acc,-N) in (P-1.11) is an implementation of these ideas.9

Prolog Code P-1.11: Definition of numbers/2

1 numbers(Atom,N) :- atom_codes(Atom,Values), % clause 0

2 numbers(Values,nodigit,0,N), !. %

3 numbers([],_,N,N). % clause 1

4 numbers([H|T],nodigit,Acc,N) :- digit(H), % clause 2

5 NewAcc is Acc + 1, !, %

6 numbers(T,digit,NewAcc,N). %

7 numbers([H|T],digit,Acc,N) :- digit(H), !, % clause 3

8 numbers(T,digit,Acc,N). %

9 numbers([_|T],_,Acc,N) :- !, numbers(T,nodigit,Acc,N). % clause 4

�

Exercise 1.2. Solve the problem from Example 1.6 as before (i.e. by a single pass through the data), now
without using a switch.10

�

1.4 Pseudocodes

Programming (in any language) is a creative activity and the accompanying thought processes may be difficult
to formalize and will ultimately remain a personal experience. Nevertheless, there are tools intended to assist
the programmer in the software production process. Here the notion of an algorithm plays a central rôle.
Indeed, one view of the (procedural) software production process is that it is a series of steps in each of which
an algorithm is derived from a previous one by refinement until a working implementation is obtained.

Ideally, when programming in Prolog we should be less concerned with algorithms and be allowed to concen-
trate on a declarative description of the problem in the hope that the Prolog system will arrive at a solution from
our specification. In practice, however, both viewpoints are useful and the accumulator technique obviously
favours the procedural style.

Therefore, as an adjunct to our discussion of the accumulator technique, we want to look at here a particular
way of describing algorithms, namely by pseudocodes. Pseudocodes are of interest in particular when using
Prolog as an implementation language for Artificial Intelligence (AI) since books in AI use pseudocode for
specifying algorithms (e.g. [7, 13, 14]).

We start with the algorithm for reversing lists by rev/2 in Example 1.1. Algorithm 1.4.1, shown below, is
inspired by the hand computations in Fig. 1.2. It is formulated in terms of iteration and would be implemented
by a while loop if we were to use an imperative programming language. It is seen that the pseudocode mimics
the workings of an abstract procedural language and that the depth to which individual steps are detailed may
be varied. When the pseudocode is finally ‘translated’ to Prolog, recursion is used to implement iteration.
Table 1.1 interrelates the steps in the hand computations with the pseudocode statements.

9Reference will be made to (P-1.11) in Exercise 1.3, p. 26.
10Hint. Employ a ‘look ahead’ strategy to see what (encoded) character will be read after the present one. (This plan allows a

concise implementation to be achieved.)

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

24

Accumulator Technique

Algorithm 1.4.1: Reverse(List)

Accumulator ← [] (1)
while List �= []

do

⎧⎨
⎩

[H |T] ← List (2)
Accumulator ← [H |Accumulator] (3)
List ← T (4)

Rev ← Accumulator (5)
return (Rev)

Statement (1) (2) (3) (4) (5)
Hand Computation Step 0© 2© 2© 2© 1©

Table 1.1: Algorithm 1.4.1 and Related Hand Computations (Fig. 1.2)

A slightly more complex case is illustrated by Example 1.3 whose pseudocode, inspired by the hand com-
putations in Fig. 1.5, is shown as Algorithm 1.4.2. (The correspondence between pseudocode statements and
steps in the hand computations is displayed in Table 1.2.)

These examples illustrate the following points.

• The while loop is implemented by recursion and by using Prolog’s control flow model.

• The if-then-else construct is implemented by putting the clauses in the right order and by pattern
matching using unification.

• Named memory locations (variables) in the pseudocode are implemented by specific arguments of predi-
cates or of compound terms.

• Assignment (indicated in the pseudocode by ←) is accomplished by unification.

• In general, Prolog implementations tend to be more concise than the corresponding program written in a
conventional language.

We conclude this section with the pseudocode for Example 1.5, shown as Algorithm 1.4.3, p. 26. This is of
special interest for two reasons. First, the algorithm is not expected to produce any ’output’ in the procedural
sense except for Prolog’s Yes –No response. This should be no cause for concern, however; proceed as before
except that the predicate now has no ’output’ argument. The second noteworthy property of Algorithm 1.4.3 is
that it contains a mid-loop exit and therefore it does not comply with the princiles of Structured Programming
(one entry – one exit), a style normally adhered to in procedural programming. Thus, Nassi-Shneiderman
Diagrams (also called Structograms) [12], would not be a suitable alternative for specifying this algorithm even
though palin/1 is a good example of a perfectly acceptable Prolog definition. This shows that Prolog allows
code to be written whose logic would be frowned upon under different circumstances and whose use would be
out of bounds for users of Structograms.11

11We note in passing that the German Code of Practice DIN 66261 [6] describes the use of Structograms.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

25

Accumulator Technique

Algorithm 1.4.2: Count(Atom)

V alues ← list of ASCII values of characters in Atom (1)
AccU ← 0 (2)
AccL ← 0 (3)
while V alues �= []

do

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[H |T] ← V alues (4)
if H is an upper case letter

then
{
AccU ← AccU + 1 (5)

else if H is a lower case letter
then

{
AccL ← AccL + 1 (6)

V alues ← T (7)
Uppers ← AccU (8)
Lowers ← AccL (9)
return (Uppers, Lowers)

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Prolog Techniques

26

Accumulator Technique

Statement (1) (2) (3) (4) (5) (6) (7) (8) (9)

Hand Compn

Step
0© 0© 0© 2© 3© 4© 2© 3© 2© 3© 4© 1© 1©

Table 1.2: Algorithm 1.4.2 and Related Hand Computations (Fig. 1.5)

Algorithm 1.4.3: Palindrome(List)

Accumulator ← [] (1)
while List �= []

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if List = Accumulator (2)
then

{
return (success)

else

⎧⎨
⎩

[H |T] ← List (3)
if T = Accumulator (4)
then

{
return (success)

List ← T (5)
Accumulator ← [H |Accumulator] (6)

return (failure)

Statement (1) (2) (3) (4) (5) (6)
Hand Computation Step 0© 1© 2© 3© 2© 3© 3©

Table 1.3: Algorithm 1.4.3 and Related Hand Computations (Figs. 1.6 & 1.7)

Exercise 1.3. Construct the pseudocode for the Prolog code in Example 1.6. Also establish the correspon-
dence between the Prolog clauses and the statements of your pseudocode.

�

1.5 Generalization

Each clause of the predicates seen thus far with accumulator arguments fits one of the two patterns shown in
Fig. 1.8.12, 13

Fig. 1.9 shows a more general scheme where we group Input and Accumulator into Argument which then
is subjected to some transformations until a stopping criterion applies.

12For palin/2 from Example 1.5 also to fit this mould, the Result argument is to be ignored.
13If necessary, apply first the technique from Example 1.4 to reduce the arity of predicate to 3.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

27

Accumulator Technique

predicate(Input,Accumulator,Accumulator) :-

stopping-condition(Input,Accumulator).

predicate(Input,Accumulator,Result) :-

carry-on-condition(Input,Accumulator),

transform(Input,Accumulator,NewInput,NewAccumulator),

!, predicate(NewInput,NewAccumulator,Result).

Figure 1.8: Typical Clause Structures of a Predicate with an Accumulator

predicate(Argument,Result) :- stopping-condition(Argument),

extract-info-from(Argument,Result).

predicate(Argument,Result) :- carry-on-condition(Argument),

transform(Argument,NewArgument),

!, predicate(NewArgument,Result).

Figure 1.9: Generalized Clause Structures

1.6 Case Study: The Perceptron Training Algorithm

1.6.1 Classification Problem

A basic problem in connectionist AI is that of finding a linear classifier for two groups of data in the space of
n–tuples of real numbers. As an illustrative example, we consider the two-dimensional data in Table 1.4.

x1 6.981 14.414 2.337 8.500 9.190 1.149 14.786 7.842
x2 0.554 4.466 4.040 3.496 2.000 6.100 2.179 6.331

Label d −1 +1 −1 +1 −1 −1 +1 +1

Table 1.4: Co-ordinates of Points in the Plane with Class Labels

Each of the 8 points belongs to one of the two classes labelled +1 or −1. A plot of the data with a separating
straight line is shown in Fig. 1.10. The Perceptron Training Algorithm allows a separating straight line to be
found if it exists (e.g. [7, 13, 14]); the data then is said to be linearly separable.

1.6.2 Algorithm

A simple decision rule for linearly separable data is based on the perceptron which in the two–dimensional case
can be written in the form

d(x1, x2) =

{
+1 if w1x1 + w2x2 ≥ t,

−1 if w1x1 + w2x2 < t,
(1.1)

with weights w1, w2 and threshold t. The decision rule (1.1) generalizes for n–dimensional data to

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

28

Accumulator Technique

◦

•
◦

•

◦

◦

•

•

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1

2

3

4

5

6

7

8

Labels
• = +1
◦ = −1

Figure 1.10: A Linearly Separable Data Set

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Prolog Techniques

29

Accumulator Technique

d(x1, · · · , xn, xn+1) =

{
+1 if w1x1 + · · · + wnxn + wn+1xn+1 ≥ 0,

−1 if w1x1 + · · · + wnxn + wn+1xn+1 < 0,
(1.2)

with weights w1, · · · , wn+1 and unit bias xn+1 = 1.14 For later reference, (1.2) is presented in Fig. 1.11 as a
procedure. �

�

�

�
procedure Classify([x1, · · · , xn+1], [w1, · · · , wn+1])

class ← sign
(∑n+1

k=1 wkxk

)
return (class)

Figure 1.11: Classifying a Point

The sign function in Fig. 1.11 is defined by

sign(s) =

{
+1 if s ≥ 0,

−1 if s < 0.

In Fig. 1.12 it is shown how a single updating step is carried out by the perceptron. It takes a sample point
x from the training data with the corresponding desired class label d, the current (list of) weights w and returns
the updated weights, w(new). The positive constant c, the learning rate, is arbitrary but fixed throughout the
whole training session.

To find a set of weights for which the decision rule correctly classifies all training points, the updating step
from Fig. 1.12 is repeated as indicated in Fig. 1.13, p. 31. The weights’ initial values and the learning rate are
arbitrary; we have chosen w(0) = [−0.51,−0.35, 0.13] and c = 0.25 in our example. After each iteration step, it
is checked whether any of the training data points is misclassified, in which case iteration continues. Iteration
is stopped as soon as all training data points are correctly classified. This is shown in Algorithm 1.6.3, p. 32.

1.6.3 Implementation

We represent (the by the unit bias augmented version of) Table 1.4 and the weights’ initial values by the facts

ps([[6.981, 0.554, 1], ..., [7.842, 6.331, 1]]). % points

ds([-1, 1, -1, 1, -1, -1, 1, 1]). % classes

ws([-0.51, -0.35, 0.13]). % weights

The Perceptron Training Algorithm 1.6.3 will be implemented by the predicate pta/6 with argument pattern

pta(+LearningRate,+Points,+DesiredOutputs,+Weights,

-FinalWeights,-Iterations)

It calls in (P-1.12) the auxiliary predicate pta/2 , which itself is structured according to Fig. 1.9.

Prolog Code P-1.12: Definition of pta/6

1 pta(LRate, Points, DesiredOutputs, Weights, FinalWeights,Iters) :-

2 pta(in(LRate,Points,DesiredOutputs,Weights,0),

3 out(FinalWeights,Iters)).

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

30

Accumulator Technique

[x1, · · · , xn+1] d −−−−→
�� �	Perceptron

←−
−−
−

−−−−→

[w1, · · · , wn+1]

[w
(new)
1 , · · · , w

(new)
n+1]

�

�

procedure Perceptron([x1, · · · , xn+1], d, [w1, · · · , wn+1])
for j ← 1 to (n + 1)

do

⎧⎨
⎩

class ← Classify([x1, · · · , xn+1], [w1, · · · , wn+1])
Δwj ← c (d − class)xj

w
(new)
j ← wj + Δwj

return ([w
(new)
1 , · · · , w

(new)
n+1])

Figure 1.12: A Single Updating Step

The rôles of the arguments of in/5 and out/2 are obvious from the names chosen. (The last argument of
in/5 is an accumulator for the iteration number. It is initialized to zero in (P-1.12).) The definition in (P-1.13)
follows the layout from Fig. 1.9.

Prolog Code P-1.13: Definition of pta/2

1 pta(in(_,Ps,Ds,Ws,I),out(Ws,I)) :- classify_all(Ps,Ws,Ds), !. % clause 1

2 pta(Arg,Result) :- transform(Arg,NewArg), % clause 2

3 !, pta(NewArg,Result). %

With reference to Fig. 1.9 it is seen that

14Equation (1.2) thereby subsumes (1.1) by putting n = 2 and t = −wn+1.
15The symbol ++ stands for list concatenation.

http://bookboon.com/

Download free eBooks at bookboon.com

Prolog Techniques

31

Accumulator Technique

F
ir

st
T
ra

in
in

g
E

p
o
ch

�

�

S
ec

o
n
d

T
ra

in
in

g
E

p
o
ch

�

�

w(0)

[6.981, 0.554, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(1)

[14.414, 4.466, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(2)

[2.337, 4.040, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(3)

[8.500, 3.496, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(4)

[9.190, 2.000, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(5)

[1.149, 6.100, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(6)

[14.786, 2.179, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(7)

[7.842, 6.331, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(8)

[6.981, 0.554, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(9)

[14.414, 4.466, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(10)

[2.337, 4.040, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(11)

[8.500, 3.496, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(12)

[9.190, 2.000, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(13)

[1.149, 6.100, 1.000] −1 −→
�� �	Perceptron

←−
−→

w(14)

[14.786, 2.179, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(15)

[7.842, 6.331, 1.000] 1 −→
�� �	Perceptron

←−
−→

w(16)

�
�
�

Figure 1.13: Applying the Perceptron Training Algorithm

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

32

Accumulator Technique

Algorithm 1.6.3: PTA([x(1), · · · ,x(N)], [d1, · · · , dN],w)

comment: Perceptron Training Algorithm.
Iterate until all points are correctly classified.

procedure ClassifyAll([x(1), · · · ,x(N)],w)
for i ← 1 to N

do
{
ci ← Classify(x(i),w)

return ([c1, · · · , cN])

main
Weights ← w

Points ← [x(1), · · · ,x(N)]
DesiredOutputs ← [d1, · · · , dN]
ActualOutputs ← ClassifyAll(Points, Weights)
Iterations ← 0
while ActualOutputs �= DesiredOutputs

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[P |OtherPs] ← Points

[D|OtherDs] ← DesiredOutputs

Weights ← Perceptron(c, P, D, Weights)
Points ← OtherPs ++ 15 [P]
DesiredOutputs ← OtherDs ++ [D]
ActualOutputs ← ClassifyAll(Points, Weights)
Iterations ← Iterations + 1

output (Iterations, Weights)

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Prolog Techniques

33

Accumulator Technique

• In clause 1, stopping-condition is implemented by classify all/3 , defined by recursion in (P-1.14).

Prolog Code P-1.14: Definition of classify all/3

1 classify_all([],_,[]). % clause 1

2 classify_all([P|OtherPs],Weights,[Class|OtherCs]) :- % clause 2

3 classify(P,Weights,Class), !, %

4 classify_all(OtherPs,Weights,OtherCs). %

(The predicate classify/3 is a straightforward implementation of the procedure in Fig. 1.11; for its
definition, see the file accumulator.pl.)

• In clause 1, extract-info-from is realized by unification of the last two arguments of in/5 with those
of out/2 .

• In clause 2, the carry-on-condition is implicitly defined by failure of the predicate classify all/3 in
clause 1.

• Finally, the predicate transform/2 is defined by (P-1.15).

Prolog Code P-1.15: Definition of transform/2

1 transform(in(C,[P|OtherPs],[D|OtherDs],Ws,Acc),

2 in(C,NewPs,NewDs,NewWs,NewAcc)) :-

3 append(OtherPs,[P],NewPs),

4 append(OtherDs,[D],NewDs),

5 perceptron(C,P,D,Ws,NewWs),

6 NewAcc is Acc + 1.

The predicate perceptron/5 in (P-1.15), line 5, is a straightforward implementation of the weight up-
dating step from Fig. 1.12. It is defined in (P-1.16).

Prolog Code P-1.16: Definition of perceptron/5

1 perceptron(C,Point,D,Weights,NewWeights) :-

2 classify(Point,Weights,Class),

3 Const is C * (D - Class),

4 mult(Const,Point,DeltaWs),

5 add(Weights,DeltaWs,NewWeights).

The implementation thus defined we use to find after 801 iterations a correct classifier.

?- ps(Ps), ds(Ds), ws(W0), pta(0.25, Ps, Ds,W0,W,I). 16

W0 = [-0.51, -0.35, 0.13]

W = [3.018, 4.1935, -39.87]

I = 801

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

34

Accumulator Technique

While the initial weights give rise to some incorrect classifications,

?- ps(Ps), classify all(Ps, [-0.51, -0.35, 0.13], Classes).

Classes = [-1, -1, -1, -1, -1, -1, -1, -1]

the new weights define a correct classifier,

?- ps(Ps), classify all(Ps, [3.018, 4.1935, -39.87], Classes).

Classes = [-1, 1, -1, 1, -1, -1, 1, 1]

(The corresponding separating straight line

{ (x1, x2) : 3.018x1 + 4.1935x2 − 39.87 = 0 }

is shown in Fig. 1.10.)

16In the version of SWI–Prolog used here (version 3.4.5), variables whose name starts with an underscore (such as Ps) won’t
be displayed. Issue the query

?- set prolog flag(toplevel print anon, false).

Yes

at the beginning of the session to achieve the same effect with version 5.2.7 (the most recent version at the time of writing).

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Prolog Techniques

35

Accumulator Technique

Exercise 1.4. To make the definition of perceptron/5 in (P-1.16) complete, define mult/3 and add/3

thus implementing scalar multiplication and addition of vectors, respectively. Your definitions should be by
both simple recursion and the accumulator technique. Reflect on the performance of each implementation.

�

Exercise 1.5. The Perceptron Training Algorithm may be carried out for a fixed number of iterations
rather than until all points are correctly classified. Augment the definition of pta/6 to cover this case too.
Thus the argument pattern of pta/6 is now

pta(+LearningRate,+Points,+DesiredOutputs,+Weights,

-FinalWeights,?Iterations)

This modification is useful for instance in our example for confirming that the least number of iterations needed
to classify all points correctly is indeed 801:17

?- ps(Ps), ds(Ds), ws(W0), pta(0.25, Ps,_Ds,W0,W,800).

W0 = [-0.51, -0.35, 0.13]

W = [6.5085, 4.4705, -39.37]

?- ps(Ps), classify all(Ps,[6.5085, 4.4705, -39.37],Classes).

Classes = [1, 1, -1, 1, 1, -1, 1, 1]

Hint. Use Algorithm 1.6.4 (p. 35) in lieu of Algorithm 1.6.3. A minimal change to clause 1 of pta/2 (p. 30)
will do.

�

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

36

Accumulator Technique

Algorithm 1.6.4: PTA(c, [x(1), · · · ,x(N)], [d1, · · · , dN],w, m)

comment: Perceptron Training Algorithm.
Iterate m(> 0) number of times.

main
Weights ← w
Points ← [x(1), · · · ,x(N)]
DesiredOutputs ← [d1, · · · , dN]
Iterations ← m

repeat⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[P |OtherPs] ← Points

[D|OtherDs] ← DesiredOutputs

Weights ← Perceptron(c, P, D, Weights)
Points ← OtherPs ++ [P]
DesiredOutputs ← OtherDs ++ [D]
Iterations ← Iterations − 1

until Iterations = 0
output (Weights)

17From the procedure Perceptron in Fig. 1.12 it is seen that once a set of weights has been found which gives rise to correct
classification for all points, further iterations won’t change the weights’ values. Thus, the fact that after 800 iterations some of
the points are misclassified, shows that any lesser number of iterations won’t do either. 801 is therefore the minimum number of
iterations needed for correct classification.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

